Simulating the RFOFO ring using GEANT

Amit Klier

University of California, Riverside

Emittance Exchange Workshop
Fermilab, August 2003
(updated version)

OUTLINE

- Geometry and magnetic field
- Setting the parameters
 - Reference orbit
 - Defining the clock
- Single particles in the ring
 - "Cooling" with an Ideal Absorber
 - Acceptance and RF parameters
- Cooling of a beam
 - With/without muon decay.
 - Comparing to other results
 - Problems...

Basic ingredients

- Simulation software GEANT 3.21, as used in Tetra ring simulations (R. Raja, R. Godang)
- Geometry from R. Fernow, V. Balbekov (MC-Note 264)
- Magnetic field maps provided by Mississippi (R. Godang, S. Bracker, see also MC-Note 271)

The ring geometry

- 33 m circumference
- 12 cells (2.75m):
 - A wedge absorber opening angle 110°, pointing "upwards'
 - 6 RF cavities28.75 cm long,acceptance radius 25 cm
 - 2 tilted solenoids inner/outer r = 77/88 cm tilt angle ±3°
 Only for display here...

A view of a single cell

3-D view of the RFOFO ring

Defining the ring parameters

- Find the "reference orbit"
 - Run without RF acceleration or absorbers
 - Find a closed orbit (also periodic in cells)
- Start in the middle of the absorber

It's one of 2 point in which the initial p_T vanishes (for obvious symmetry reasons)
It's also where the cell "begins"...

Running without RF & absorbers

Only with the magnetic field on,

- The ring is stable for a range of initial p_z's ~165–260 MeV/c
- The strategy:
 - for each P_z, find a "stationary point" in the half-wedge plane, where the muon returns to the same x,y in every cell
 - Check x and y dependence on initial energy to find best position and direction of the absorber
 - Find a "clock" to set the entry times of RF cavities
 - ☐ Then RF and absorber can be turned on

Dispersion function at half-wedge: horizontal coordinate

 No linear dependence especially at low energy

Dispersion function at half-wedge: vertical coordinate

Linear dependence in the y direction:

To 1st order – wedges with straight walls point upwards

Setting the clock

- RF frequency: f = 201.25 MHz
 - Set the entry times of the cavities:
 run a muon in the ring (without RF & absorber)
 with a rotation period of an integer multiple 1/f.
- For $p_z = 200.96 \text{ MeV/c} (E \square 227 \text{ MeV})$

(actually, 201.26 MHz was the closest I could get)

Turn on the RF and absorber

- First, use an ideal absorber no multiple scattering, straggling, or other processes
- RF electric field "a la Tetra":

```
In the cavity volume (cavity coordinates): E_x = E_y = 0, E_z = G \cdot \sin[[(t-t_{ent})+[_{ent}]], independent of point in space (I used G=13.5 MV/m, [_{ent}=-13^\circ] for the single-particle simulation)
```

See what happens when injecting muons from various points in parameter space

central value, ±1,2 (Gaussian beam from MC-264)

Perfect absorber – perfect cooling

y evolution for various initial E, p_y

RF gradient and acceptance

- Acceptance depends on RF parameters:
 - Gradient, G
 - Entry phase, □_{ent}
- Best acceptance over ±20° in entry phases (corresponds to time spread in the beam):
 G□15 MV/m, □_{ent}□5°

Use realistic absorbers...

- Turn on all processes (except muon decay)
- Looks like a big mess!
 But only a few particles
 are shown here!

To simulate cooling we need large statistics – a beam

The beam

- Based on MC-Note 264,
- Gaussian distributions:
 - $\square \square_{x} = \square_{v} = 4.25$ cm
 - $\square \square_{px} = \square_{py} = 30 \text{ MeV/c}$
 - $\square \square_{z} = 8 \text{ cm } (\square_{cT} = 8 \text{ cm in the Note})$
 - \square \square _{pz} = 22.5 MeV/c (\square _{ПE} = 20 MeV in the Note)
- Very preliminary cooling simulation:
 - Only 400 (250) muons without (with) decay
 - ☐ Emittance calculated from r.m.s. (no correlations)

Cooling performance – "emittances", transmission

Cooling performance – "6-D emittance", merit factor

Performance after 10 turns in comparison to others

	ICOOL (MC-239)	Balbekov (MC-264)	GEANT (current)
Transmission, no decay (%)	61	70	63
Transmission with decay (%)	50	56	49
Merit factor (w/ decay)	50	55	~30 (about <u>□</u> 2 less)

Conclusions

- First GEANT simulation of muon cooling in the RFOFO ring was performed
- Preliminary results: performance is comparable to other simulations (ICOOL, Balbekov)
- To be done:
 - Increase statistics use more particles in a beam

Amit Klier

- Calculate the emittance using ecalc9 (the right way to do it)
- Other simulation improvements are considered
- in collaboration with R. Godang, S. Kahn